每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
初一數(shù)學期中重點知識篇一
1.判斷一個方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。
2.二元一次方程的解:一個二元一次方程有無數(shù)個解,而每一個解都是一對數(shù)值。求二元一次方程的解的方法:若方程中的.未知數(shù)為x,y,可任取x的一些值,相應的可算出y的值,這樣,就會得到滿足需要的數(shù)對。
3.二元一次方程組:兩個二元一次方程合在一起,就組成了一個二元一次方程組。作為二元一次方程組的兩個方程,不一定都含有兩個未知數(shù),可以其中一個是一元一次方程,另一個是二元一次方程。
4.二元一次方程組的解:使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數(shù)的值,叫做二元一次方程組的解。檢驗一對數(shù)值是不是二元一次方程組的解的方法是,將兩個未知數(shù)分別代入方程組中的兩個方程,如果都能滿足這兩個方程,那么它就是方程組的解。
初一數(shù)學期中重點知識篇二
(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點,單位長度,正方向。
(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù)。)
(3)用數(shù)軸比較大?。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,有偶數(shù)個“﹣”號,結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。
1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。
①互為相反數(shù)的兩個數(shù)絕對值相等;
③有理數(shù)的絕對值都是非負數(shù).
①當a是正有理數(shù)時,a的絕對值是它本身a;
②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a0)0(a=0)﹣a(a0)
1.有理數(shù)的大小比較
比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用絕對值比較兩個負數(shù)的大小。
2.有理數(shù)大小比較的法則:
①正數(shù)都大于0;
②負數(shù)都小于0;
③正數(shù)大于一切負數(shù);
④兩個負數(shù),絕對值大的其值反而小。
規(guī)律方法·有理數(shù)大小比較的三種方法:
(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).
(3)作差比較:
若a﹣b0,則ab;
若a﹣b0,則a
若a﹣b=0,則a=b。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 即:a﹣b=a+(﹣b)
方法指引:
①在進行減法運算時,首先弄清減數(shù)的符號;
②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù))。
注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律。
減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應依法則進行計算。
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
(2)任何數(shù)同零相乘,都得0。
(3)多個有理數(shù)相乘的法則:
②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。
(4)方法指引
①運用乘法法則,先確定符號,再把絕對值相乘;
②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡單。
1.解一元一次方程的一般步驟
去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化。
2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,就先去括號。
3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。
使方程逐漸轉(zhuǎn)化為ax=b的最簡形式體現(xiàn)化歸思想。
將ax=b系數(shù)化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數(shù)時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。
1.一元一次方程解應用題的類型
(1)探索規(guī)律型問題;
(2)數(shù)字問題;
(5)行程問題(路程=速度×時間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。
2.利用方程解決實際問題的基本思路
首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答。
列一元一次方程解應用題的五個步驟:
(3)列:根據(jù)等量關(guān)系列出方程;
(4)解:解方程,求得未知數(shù)的值;
(5)答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句。
(1)直線、射線、線段的表示方法;
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線ab。
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段ab(或線段ba)。
(2)點與直線的位置關(guān)系:
①點經(jīng)過直線,說明點在直線上;
②點不經(jīng)過直線,說明點在直線外。
初一數(shù)學期中重點知識篇三
(1)審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
(2)設(shè)元(未知數(shù))。
①直接未知數(shù);②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
(3)用含未知數(shù)的代數(shù)式表示相關(guān)的量。
(4)尋找相等關(guān)系(有的由題目給出,有的.由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。
(5)解方程及檢驗。
(6)答案。
綜上所述,列方程(組)解應用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設(shè)元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關(guān)鍵。
初一數(shù)學期中重點知識篇四
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
題型簡單總結(jié)以下三種:
①已知條件不化簡,所給代數(shù)式化簡;
②已知條件化簡,所給代數(shù)式不化簡;
③已知條件和所給代數(shù)式都要化簡.
3由三視圖判斷幾何體
②從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線;
③熟記一些簡單的幾何體的三視圖對復雜幾何體的想象會有幫助;