每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫(xiě)一篇文章。寫(xiě)作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫(xiě)范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。
初一數(shù)學(xué)期中重點(diǎn)知識(shí)篇一
1.判斷一個(gè)方程是不是二元一次方程,一般要將方程化為一般形式后再根據(jù)定義判斷。
2.二元一次方程的解:一個(gè)二元一次方程有無(wú)數(shù)個(gè)解,而每一個(gè)解都是一對(duì)數(shù)值。求二元一次方程的解的方法:若方程中的.未知數(shù)為x,y,可任取x的一些值,相應(yīng)的可算出y的值,這樣,就會(huì)得到滿足需要的數(shù)對(duì)。
3.二元一次方程組:兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。作為二元一次方程組的兩個(gè)方程,不一定都含有兩個(gè)未知數(shù),可以其中一個(gè)是一元一次方程,另一個(gè)是二元一次方程。
4.二元一次方程組的解:使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程組的解的方法是,將兩個(gè)未知數(shù)分別代入方程組中的兩個(gè)方程,如果都能滿足這兩個(gè)方程,那么它就是方程組的解。
初一數(shù)學(xué)期中重點(diǎn)知識(shí)篇二
(1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點(diǎn),單位長(zhǎng)度,正方向。
(2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù).(一般取右方向?yàn)檎较?,?shù)軸上的點(diǎn)對(duì)應(yīng)任意實(shí)數(shù),包括無(wú)理數(shù)。)
(3)用數(shù)軸比較大小:一般來(lái)說(shuō),當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對(duì)出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。
(3)多重符號(hào)的化簡(jiǎn):與“+”個(gè)數(shù)無(wú)關(guān),有奇數(shù)個(gè)“﹣”號(hào)結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號(hào),結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號(hào)時(shí),要用小括號(hào)。
1.概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值。
①互為相反數(shù)的兩個(gè)數(shù)絕對(duì)值相等;
③有理數(shù)的絕對(duì)值都是非負(fù)數(shù).
①當(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;
②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;
③當(dāng)a是零時(shí),a的絕對(duì)值是零.
即|a|={a(a0)0(a=0)﹣a(a0)
1.有理數(shù)的大小比較
比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個(gè)有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號(hào)兩數(shù)及0的大小,利用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大小。
2.有理數(shù)大小比較的法則:
①正數(shù)都大于0;
②負(fù)數(shù)都小于0;
③正數(shù)大于一切負(fù)數(shù);
④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小。
規(guī)律方法·有理數(shù)大小比較的三種方法:
(2)數(shù)軸比較:在數(shù)軸上右邊的點(diǎn)表示的數(shù)大于左邊的點(diǎn)表示的數(shù).
(3)作差比較:
若a﹣b0,則ab;
若a﹣b0,則a
若a﹣b=0,則a=b。
有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。 即:a﹣b=a+(﹣b)
方法指引:
①在進(jìn)行減法運(yùn)算時(shí),首先弄清減數(shù)的符號(hào);
②將有理數(shù)轉(zhuǎn)化為加法時(shí),要同時(shí)改變兩個(gè)符號(hào):一是運(yùn)算符號(hào)(減號(hào)變加號(hào)); 二是減數(shù)的性質(zhì)符號(hào)(減數(shù)變相反數(shù))。
注意:在有理數(shù)減法運(yùn)算時(shí),被減數(shù)與減數(shù)的位置不能隨意交換;因?yàn)闇p法沒(méi)有交換律。
減法法則不能與加法法則類(lèi)比,0加任何數(shù)都不變,0減任何數(shù)應(yīng)依法則進(jìn)行計(jì)算。
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
(2)任何數(shù)同零相乘,都得0。
(3)多個(gè)有理數(shù)相乘的法則:
②幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0,積就為0。
(4)方法指引
①運(yùn)用乘法法則,先確定符號(hào),再把絕對(duì)值相乘;
②多個(gè)因數(shù)相乘,看0因數(shù)和積的符號(hào)當(dāng)先,這樣做使運(yùn)算既準(zhǔn)確又簡(jiǎn)單。
1.解一元一次方程的一般步驟
去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對(duì)方程的特點(diǎn),靈活應(yīng)用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化。
2.解一元一次方程時(shí)先觀察方程的形式和特點(diǎn),若有分母一般先去分母;若既有分母又有括號(hào),且括號(hào)外的項(xiàng)在乘括號(hào)內(nèi)各項(xiàng)后能消去分母,就先去括號(hào)。
3.在解類(lèi)似于“ax+bx=c”的方程時(shí),將方程左邊,按合并同類(lèi)項(xiàng)的方法并為一項(xiàng)即(a+b)x=c。
使方程逐漸轉(zhuǎn)化為ax=b的最簡(jiǎn)形式體現(xiàn)化歸思想。
將ax=b系數(shù)化為1時(shí),要準(zhǔn)確計(jì)算,一弄清求x時(shí),方程兩邊除以的是a還是b,尤其a為分?jǐn)?shù)時(shí);二要準(zhǔn)確判斷符號(hào),a、b同號(hào)x為正,a、b異號(hào)x為負(fù)。
1.一元一次方程解應(yīng)用題的類(lèi)型
(1)探索規(guī)律型問(wèn)題;
(2)數(shù)字問(wèn)題;
(5)行程問(wèn)題(路程=速度×?xí)r間);
(6)等值變換問(wèn)題;
(7)和,差,倍,分問(wèn)題;
(8)分配問(wèn)題;
(9)比賽積分問(wèn)題;
(10)水流航行問(wèn)題(順?biāo)俣?靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。
2.利用方程解決實(shí)際問(wèn)題的基本思路
首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答。
列一元一次方程解應(yīng)用題的五個(gè)步驟:
(3)列:根據(jù)等量關(guān)系列出方程;
(4)解:解方程,求得未知數(shù)的值;
(5)答:檢驗(yàn)未知數(shù)的值是否正確,是否符合題意,完整地寫(xiě)出答句。
(1)直線、射線、線段的表示方法;
①直線:用一個(gè)小寫(xiě)字母表示,如:直線l,或用兩個(gè)大寫(xiě)字母(直線上的)表示,如直線ab。
③線段:線段是直線的一部分,用一個(gè)小寫(xiě)字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段ab(或線段ba)。
(2)點(diǎn)與直線的位置關(guān)系:
①點(diǎn)經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線上;
②點(diǎn)不經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線外。
初一數(shù)學(xué)期中重點(diǎn)知識(shí)篇三
(1)審題。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。
(2)設(shè)元(未知數(shù))。
①直接未知數(shù);②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。
(3)用含未知數(shù)的代數(shù)式表示相關(guān)的量。
(4)尋找相等關(guān)系(有的由題目給出,有的.由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。
(5)解方程及檢驗(yàn)。
(6)答案。
綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
初一數(shù)學(xué)期中重點(diǎn)知識(shí)篇四
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
題型簡(jiǎn)單總結(jié)以下三種:
①已知條件不化簡(jiǎn),所給代數(shù)式化簡(jiǎn);
②已知條件化簡(jiǎn),所給代數(shù)式不化簡(jiǎn);
③已知條件和所給代數(shù)式都要化簡(jiǎn).
3由三視圖判斷幾何體
②從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線;
③熟記一些簡(jiǎn)單的幾何體的三視圖對(duì)復(fù)雜幾何體的想象會(huì)有幫助;