總結(jié)是對(duì)某一特定時(shí)間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書(shū)面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,讓我們一起來(lái)學(xué)習(xí)寫(xiě)總結(jié)吧。那關(guān)于總結(jié)格式是怎樣的呢?而個(gè)人總結(jié)又該怎么寫(xiě)呢?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來(lái)看看吧。
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇一
二次函數(shù)的概念:一般地,形如ax^2+bx+c=0的函數(shù),叫做二次函數(shù)。
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;
開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;
開(kāi)口、大小由a斷,c與y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇二
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一章一章過(guò)關(guān),不要輕易留下自己不明白或者理解不深刻的問(wèn)題,一定要把每一個(gè)環(huán)節(jié)都學(xué)牢。
2、概念記清,基礎(chǔ)夯實(shí)
千萬(wàn)不要忽視最基本的概念、公理、定理和公式,每新學(xué)一個(gè)定理或者定義的時(shí)候,都要在理解的基礎(chǔ)上去深挖每一個(gè)字眼,有時(shí)候少說(shuō)一兩個(gè)字,都可能導(dǎo)致結(jié)果的不同。要在剛開(kāi)始學(xué)概念的時(shí)候就弄清楚,通過(guò)讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
3、適當(dāng)做題,巧做為主
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時(shí)多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉中考的題型,訓(xùn)練要做到有的放矢。有的同學(xué)埋頭題海苦苦掙扎,輔導(dǎo)書(shū)做掉一大堆卻鮮有提高,這就是陷入了做題的誤區(qū)。數(shù)學(xué)需要實(shí)踐,需要大量做題,但要“埋下頭去做題,抬起頭來(lái)想題”,在做題中關(guān)注思路、方法、技巧,要“苦做”更要“巧做”.考試中時(shí)間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯(cuò)。
4、記錄錯(cuò)題,避免再犯
俗話說(shuō),“一朝被蛇咬,十年怕井繩”,可是同學(xué)們常會(huì)一次又一次地掉入相似甚至相同的“陷阱”里。因此,建議大家在平時(shí)的做題中就要及時(shí)記錄錯(cuò)題,更重要的是還要想一想為什么會(huì)錯(cuò)、以后要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考或者在平時(shí)考試當(dāng)中是“分分必爭(zhēng)”,一分也失不得。這樣 復(fù)習(xí)時(shí),這個(gè)錯(cuò)題本也就成了寶貴的復(fù)習(xí)資料。
5、集中兵力,攻下弱點(diǎn)
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇三
y=k/x(k≠0)的圖象叫做雙曲線.
當(dāng)k0時(shí),雙曲線在一、三象限(在每一象限內(nèi),從左向右降);
因此,它的增減性與一次函數(shù)相反.
以上對(duì)反比例函數(shù)知識(shí)點(diǎn)的講解,相信同學(xué)們能很好的掌握了,希望同學(xué)們能很好的學(xué)習(xí)知識(shí)點(diǎn)。
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇四
反比例函數(shù)的定義
定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)的性質(zhì)
函數(shù)y=k/x 稱為反比例函數(shù),其中k≠0,其中x是自變量,
1.當(dāng)k0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。
2.k0時(shí),函數(shù)在x0上同為減函數(shù)、在x0上同為減函數(shù);k0時(shí),函數(shù)在x0上為增函數(shù)、在x0上同為增函數(shù)。
3.x的取值范圍是: x≠0;
y的取值范圍是:y≠0。
5. 反比例函數(shù)的圖象既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有兩條對(duì)稱軸 y=x y=-x(即第一三,二四象限角平分線),對(duì)稱中心是坐標(biāo)原點(diǎn)。
反比例函數(shù)的一般形式
(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。
其中,x是自變量,y是函數(shù)。由于x在分母上,故取x≠0的一切實(shí)數(shù),看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。
2.要求出反比例函數(shù)的解析式,利用待定系數(shù)法求出k即可.
反比例函數(shù)解析式的特征
⑴等號(hào)左邊是函數(shù),等號(hào)右邊是一個(gè)分式。分子是不為零的常數(shù)(也叫做比例系數(shù)),分母中含有自變量,且指數(shù)為1。
⑵比例系數(shù)
⑶自變量的取值為一切非零實(shí)數(shù)。
⑷函數(shù)的取值是一切非零實(shí)數(shù)。
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇五
(一)、映射、函數(shù)、反函數(shù)
2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):
(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(二)、函數(shù)的解析式與定義域
(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開(kāi)方數(shù)不小于零;
③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;
④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
2、求函數(shù)的解析式一般有四種情況
(三)、函數(shù)的值域與最值
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用
(四)、函數(shù)的奇偶性
注意如下結(jié)論的運(yùn)用:
高等數(shù)學(xué)與函數(shù)知識(shí)點(diǎn)總結(jié)高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)篇六
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=o時(shí),直線通過(guò)原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k0時(shí),直線只通過(guò)一、三象限;當(dāng)k0時(shí),直線只通過(guò)二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)a(x1,y1);b(x2,y2),請(qǐng)確定過(guò)點(diǎn)a、b的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量s。g=s-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)