作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫呢?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
小學(xué)三角形的內(nèi)角和教案 小學(xué)數(shù)學(xué)三角形面積教案篇一
【課程標(biāo)準(zhǔn)】:認(rèn)識三角形,通過觀察、操作、了解三角形內(nèi)角和是180度。
【學(xué)情分析】:
學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生是不陌生的,因?yàn)閷W(xué)生有以前認(rèn)識角、用量角器量三角板三個角的度數(shù)以及三角形的分類的基礎(chǔ),學(xué)生也有提前預(yù)習(xí)的習(xí)慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過三年多的學(xué)習(xí),學(xué)生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。
【】
1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。
2、在教師的引導(dǎo)下,通過猜測和計算能說出三角形的內(nèi)角和是180°。
3、在小組合作交流中,通過動手操作,實(shí)驗(yàn)、驗(yàn)證、總結(jié)三角形的內(nèi)角和是180°,同時發(fā)展動手動腦及分析推理能力。
4、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
【】
1、利用孩子已有經(jīng)驗(yàn),通過教師的提問和引導(dǎo)以及學(xué)生的直觀觀察,說出三角形的內(nèi)角、內(nèi)角和的含義。達(dá)成目標(biāo)1。
2、在教師的引導(dǎo)下,以游戲的形式學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。達(dá)成目標(biāo)2。
3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實(shí)驗(yàn)、驗(yàn)證并歸納總結(jié)出三角形的內(nèi)角和是180°。達(dá)成目標(biāo)3。
4、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”和習(xí)題第9、10、12題達(dá)成目標(biāo)4和目標(biāo)3。
【】
教學(xué)重點(diǎn):探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°。
教學(xué)難點(diǎn): 充分發(fā)揮學(xué)生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°
【教學(xué)過程】
1、三角形按角的不同可以分成哪幾類?
2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數(shù)?
二、探究新知
(一)創(chuàng)設(shè)情境,生成問題,認(rèn)識三角形的內(nèi)角及內(nèi)角和
(播放課件)在圖形王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大?!变J角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內(nèi)角和比你大”。直角三角形說:“別爭了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的?!?/p>
師:動畫片看完了,請大家想一想,什么是三角形的內(nèi)角和?
師引導(dǎo)學(xué)生說出三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
多媒體展示:三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角(板書:內(nèi)角),這三個內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。
()
(二)、引導(dǎo)猜測三角形的內(nèi)角和是180度
師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點(diǎn)?
預(yù)設(shè):學(xué)生回答直角三角形。
師:你為什么這么認(rèn)為呢?
生:我是想三角板上三個角的度數(shù)是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。
(三)、驗(yàn)證三角形的內(nèi)角和是180度
1確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學(xué)生反對)那該怎樣去驗(yàn)證呢?請你們想個辦法吧!
師:分類驗(yàn)證是科學(xué)驗(yàn)證的一種好方法,下面我們就用分類驗(yàn)證的方法來驗(yàn)證一下,看看三角形的內(nèi)角和是不是180°?
2.操作驗(yàn)證
教師讓每個學(xué)習(xí)小組拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,在每個內(nèi)角標(biāo)上序號1、2、3。然后請任意用一個三角形,想辦法驗(yàn)證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學(xué)的幫助。
智慧錦囊:
(1)要知道三個內(nèi)角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數(shù)?試一試。
(2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內(nèi)角轉(zhuǎn)化成這樣的角嗎?
3.匯報交流
師:誰來匯報你的驗(yàn)證結(jié)果?
(1)測算法
師小結(jié):用量的方法驗(yàn)證既然有誤差、不準(zhǔn),結(jié)論就難以讓人信服,那有沒有辦法更好地驗(yàn)證我們的猜測呢?誰還有別的方法?
(2)剪拼法
(3)折拼法
師小結(jié):用拼和折的方法都能將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,從而借助我們學(xué)過的平角知識證明三角形的內(nèi)角和確實(shí)是180°,你們真會動腦筋!
(4)推算法
①把一個長方形沿對角線分成兩個完全一樣的直角三角形。因?yàn)殚L方形的內(nèi)角和是360°,所以一個直角三角形的內(nèi)角和等于180°。(課件演示過程)
師直角三角形的內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。
課件演示
②一個銳角三角形,從頂點(diǎn)往下畫一條垂線,將三角形分為兩個直角三角形,因?yàn)槲覀円呀?jīng)知道直角三角形的內(nèi)角和是180°,所以兩個直角三角形的度數(shù)和就是360°,減去兩個直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。
4.總結(jié)提煉
師:孩子們,剛才我們通過“量拼折推”的方法分類驗(yàn)證了三角形的內(nèi)角和是( )度?
現(xiàn)在可以下結(jié)論了嗎?
(板書:三角形三個內(nèi)角和等于180°。)
師:那在“三角形的爭吵中”誰是對的?
(四)利用三角形內(nèi)角和是180解決問題
1、看圖,求出未知角的度數(shù)。
2、書本85頁“做一做”
在一個三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。
三、目標(biāo)達(dá)成檢測方案:
1、求出三角形各個角的度數(shù)。
2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側(cè)面,每個側(cè)面都是等腰三角形。人們量得這個三角形的一個底角是64度。
同學(xué)們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個結(jié)論的?
師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗(yàn)證方法。咱們從猜想出發(fā),經(jīng)過驗(yàn)證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問題。孩子們,其實(shí)我們在不知不覺中已經(jīng)走了數(shù)學(xué)家的探究歷程……希望同學(xué)們在今后的學(xué)習(xí)中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己
小學(xué)三角形的內(nèi)角和教案 小學(xué)數(shù)學(xué)三角形面積教案篇二
“三角形內(nèi)角和”的度數(shù)推理是三角形中的一個重要環(huán)節(jié),也是“空間與圖形”領(lǐng)域中的重要內(nèi)容之一,為學(xué)生進(jìn)一步理解三角形三個角、三條邊之間的關(guān)系打下基礎(chǔ)。本節(jié)課首先讓學(xué)生對三角形的特點(diǎn)進(jìn)行復(fù)習(xí),隨后教材中創(chuàng)設(shè)了一個有趣的動態(tài)情境,導(dǎo)入了新課,激發(fā)學(xué)生的興趣,明確“內(nèi)角和”的含義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少度,可以采用不同的方法驗(yàn)證,教學(xué)中安排了3個活動,通過這3個活動體驗(yàn)“三角形內(nèi)角和”的性質(zhì)和性質(zhì)的探索過程。
有的學(xué)生可能從各種渠道已經(jīng)對“三角形內(nèi)角和是180°”有所了解,所以本課的重點(diǎn)是通過數(shù)學(xué)活動體驗(yàn),理解為什么三角形的內(nèi)角和是180°,使學(xué)生對這個知識的掌握更深刻。經(jīng)過不斷的課改實(shí)驗(yàn),孩子們已經(jīng)有了一定的自主探究、合作交流的能力。他們喜歡在實(shí)踐中感悟,在實(shí)踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。
1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。
2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進(jìn)行簡單的計算機(jī)操作。
滲透猜想——驗(yàn)證——結(jié)論——應(yīng)用——拓展
教學(xué)目標(biāo):
1、通過直觀操作的方法,探索并發(fā)現(xiàn)三角形三個內(nèi)角和等于180度,在實(shí)踐活動中,體驗(yàn)探索的過程和方法
2、能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
教學(xué)重點(diǎn):
經(jīng)歷三角形的內(nèi)角和是180°這一知識的形成、發(fā)展和應(yīng)用的全過程,會應(yīng)用三角形的內(nèi)角和解決實(shí)際問題;
教學(xué)難點(diǎn):
是探索和驗(yàn)證性質(zhì)的過程。
三角板、量角器、剪刀、白紙
(一)、激趣導(dǎo)入,揭示課題
1、師:同學(xué)們,猜猜它是誰?
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單 (打一幾何圖形)三角形(板書) 我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點(diǎn)?生回答。(互相補(bǔ)充) (課件演示三條線段圍成三角形的過程)
三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角 形的內(nèi)角。
2、現(xiàn)在,我們來玩一個跟三角形的角有關(guān)的游戲。只要大家說出三角形任意兩個角的度數(shù),老師就能猜出第三個角,你們相信嗎?
要求每個4人小組拿出本組預(yù)先準(zhǔn)備的學(xué)具袋。(內(nèi)含四個不同的三角形,包括直角、銳角和鈍角三角形至少各一個,且要求大小不一。)
3、活動——量一量:每人任意拿出一個自己帶來的三角形,用量角器量出三角形中三個角的度數(shù),并寫在三角形中。(獨(dú)立完成,非小組合作。)
然后分別請幾個學(xué)生報出不同三角形的兩個角的度數(shù),教師當(dāng)即說出第三個角的度數(shù)。(事先向?qū)W生說明誤差僅為3、4度左右。)
你們知道老師是怎么猜出來的嗎?
到底它們之間有什么樣的秘密呢?我們今天這節(jié)課就要來揭開這個秘密。
(二)、動手操作,探究新知
1、探究特殊三角形的內(nèi)角和
拿出兩個三角板,問:它們是什么三角形?(直角三角形)
請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?
(這兩個三角形的內(nèi)角和都是180°)。這兩個三角形都是直角三角形,并且是特殊的三角形。
【設(shè)計意圖】三角板是學(xué)生非常熟悉的學(xué)習(xí)用具,度數(shù)也是非常清楚,通過計算學(xué)生熟悉的三角板內(nèi)角和來驗(yàn)證這個結(jié)論,學(xué)生也容易接受。
2、探究一般三角形內(nèi)角和
(1)猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
(2)操作、驗(yàn)證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明?(可以先量出每個內(nèi)角的度數(shù),再加起來。)
那就請小組共同計算吧!將學(xué)生采用分組的方法分成銳角三角形組、直角三角形組、鈍角三角形組、等腰三角形組,各組在白紙上任意畫三角形,并量出每個內(nèi)角的度數(shù),計算三角形內(nèi)角和。由組長統(tǒng)計記錄員記錄各組的內(nèi)角和情況。
(3)小組匯報結(jié)果。
請各小組匯報探究結(jié)果。提問:你們發(fā)現(xiàn)了什么?
小結(jié):通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。
【設(shè)計意圖】學(xué)生任意畫的三角形,有大的、有小的,有各種類型的,不論是什么樣的三角形,學(xué)生都親自動手動筆算出內(nèi)角和。這個探索過程簡單學(xué)生又容易接受。
3、操作驗(yàn)證
(1)動手操作,驗(yàn)證猜測。
沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動腦筋想一想,能通過動手操作來驗(yàn)證嗎?(先小組討論,再匯報方法)
(2)學(xué)生操作,教師巡視指導(dǎo)。
(3)全班交流匯報驗(yàn)證方法、結(jié)果。
學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°)
引導(dǎo)學(xué)生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,證實(shí)三角形內(nèi)角和確實(shí)是180° ,測量計算有誤差。
【設(shè)計意圖】學(xué)生通過親自動手操作,將三角形的三個內(nèi)角剪拼成一個平角,形象、直觀地說明了“三角形內(nèi)角和是180度”這個結(jié)論。
5、辨析概念,透徹理解。
(出示一個大三角形)它的內(nèi)角和是多少度?
(出示一個很小的三角形)它的內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學(xué)生有的答360°,有的180°.)
把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90° ,有的180° )這兩道題都有兩種答案,到底哪個對?為什么?(學(xué)生個個臉上露出疑問。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。
學(xué)生發(fā)現(xiàn): 三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
(三)小結(jié)
剛才同學(xué)們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習(xí),拓展應(yīng)用
下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
1、求三角形中一個未知角的度數(shù)。
在三角形中,已知∠1=85°,∠2=65°,求∠3。
2、判斷
(1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。( )
(2)一個三角形至少有兩個角是銳角。 ( )
(3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。 ( )
(4)直角三角形的兩個銳角和等于90°。 ( )
3、解決生活實(shí)際問題。
(1)爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是 70°,它的頂角是多少度?
(2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學(xué)討論一下,看誰能找到方法。
六、課堂總結(jié)
通過這節(jié)課的學(xué)習(xí),你有哪些收獲?
小學(xué)三角形的內(nèi)角和教案 小學(xué)數(shù)學(xué)三角形面積教案篇三
1、掌握三角形內(nèi)角和是180°,并能應(yīng)用這一規(guī)律解決一些實(shí)際問題。
2、讓學(xué)生經(jīng)歷“猜想、動手操作、直觀感知、探索、歸納、應(yīng)用”等知識形成的過程,掌握“轉(zhuǎn)化”的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生動手實(shí)踐能力,發(fā)展學(xué)生的空間思維能力。
3、在活動中,讓學(xué)生體驗(yàn)主動探究數(shù)學(xué)規(guī)律的樂趣,體驗(yàn)數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,同時使學(xué)生養(yǎng)成獨(dú)立思考的好習(xí)慣。
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應(yīng)用的全過程。
三角形內(nèi)角和的探索與驗(yàn)證。
量角器 各種類型的三角形(硬的紙板) 三角板
一、設(shè)疑激趣,導(dǎo)入新課
師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,
師:對于三角形你有哪些認(rèn)識與了解。
生:三角形有銳角三角形、直角三角形、鈍角三角形
生:由三條線段圍成的平面圖形叫三角形。
師:介紹內(nèi)角、內(nèi)角和
三角形中每兩條邊組成的角叫做三角形的內(nèi)角。
師:三角形有幾個內(nèi)角。
生:三個。
師:這三個角的和,就叫做三角形的內(nèi)角和。你知道三角形內(nèi)角和是多少度?
生1:我通過直角三角板知道的
生2:我通過長方形中四個角都是直角,是360度,三角形是長方形的一半,所以是180度
生3:我預(yù)習(xí)了,三角形內(nèi)角和就是180度)
師:是不是向他們說的一樣,所有的三角形內(nèi)角和都是180度呢?
二、自主探索,進(jìn)行驗(yàn)證
師:你打算怎樣驗(yàn)證呢?
生1用量角器量出每個角的度數(shù),再加一加看看是不是180度 生2:把三角形撕下來
師:怎么撕?象這樣撕嗎?(作亂撕狀),能說的詳細(xì)些具體些嗎? 生2:(補(bǔ)充),把三個角撕下來,拼在一起,看能不能拼成一個平角
生3:把三個角順次畫下來也可以
生4:拼一拼的方法
師:好!同學(xué)們想出了這么多辦法,下面就用你喜歡的方法驗(yàn)證 師:cai多媒體課件展示操作要求:
合作探究:
1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗(yàn)證
2、看那個小組驗(yàn)證的方法新、方法多
師:在巡視,并進(jìn)行個別操作指導(dǎo)
三、交流探索的方法和結(jié)果
孩子們探索的方法可能有三個:
生1:一是用量角器量各個角,然后再算出三角形中三個角的度數(shù)和,用這種方法求的結(jié)果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用轉(zhuǎn)化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。
生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。
四、歸納總結(jié),體驗(yàn)成功
師:孩子們,三角形中三個角的度數(shù)和到底是多少度呢?
生:180度。
五、拓展應(yīng)用
1、基礎(chǔ)練習(xí)
2、等邊三角形、等腰三角形、直角三角形
六、課堂小結(jié)
談一談自己的學(xué)習(xí)收獲。
小學(xué)三角形的內(nèi)角和教案 小學(xué)數(shù)學(xué)三角形面積教案篇四
設(shè)計說明
在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去探究、發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探究的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點(diǎn)之一。學(xué)生對三角板上每個角的度數(shù)都比較熟悉,從這里入手,先讓學(xué)生算出每塊三角板上三個內(nèi)角的和是180°,進(jìn)而引發(fā)學(xué)生猜想:其他三角形的內(nèi)角和也是180°嗎?接著引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差)。再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn)各類三角形的三個內(nèi)角都可以拼成一個平角。然后利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列的活動潛移默化地向?qū)W生滲透了轉(zhuǎn)化的數(shù)學(xué)思想,為后面的學(xué)習(xí)奠定了必要的基礎(chǔ)。最后安排了三個層次的練習(xí),逐層加深。在練習(xí)的過程中,既激發(fā)了學(xué)生主動解題的積極性,拓展了學(xué)生的思維,又兼顧到了智力水平發(fā)展較快的學(xué)生。
課前準(zhǔn)備
教師準(zhǔn)備 多媒體課件
學(xué)生準(zhǔn)備 三角板
教學(xué)過程
師:請同學(xué)們回憶一下,我們以前學(xué)過哪些平面圖形?(長方形、正方形、平行四邊形、三角形等)
師:這些是我們早已認(rèn)識的平面圖形,那么你們知道長方形有什么特征嗎?(學(xué)生匯報:長方形的對邊相等,有四個角,且四個角都是直角)
師:這四個角一共是多少度?(360°)
師:你是怎么算的?(90°×4=360°)
師:請看大屏幕。(課件演示三條線段圍成三角形的過程)三條線段圍成三角形后,在三角形內(nèi)形成了三個角(課件分別顯示出三個角的弧線),我們把三角形里面的這三個角叫做三角形的內(nèi)角。
師:通過剛才的回憶,同學(xué)們知道長方形四個內(nèi)角的和是360°,那么三角形的內(nèi)角和又是多少呢?這節(jié)課我們就來探究三角形的內(nèi)角和。(板書課題)
設(shè)計意圖:通過復(fù)習(xí)學(xué)過的平面圖形,喚醒學(xué)生的認(rèn)知。借助長方形四個角都是直角的特征,學(xué)生通過計算很容易知道長方形的內(nèi)角和是360°,從而質(zhì)疑三角形的內(nèi)角和是多少。這樣以問題情境開始,既豐富了學(xué)生的感官認(rèn)識,又激發(fā)了學(xué)生的探究欲望。
1.探究特殊三角形的內(nèi)角和。
師:(課件出示一塊三角板)大家熟悉這塊三角板嗎?請拿出形狀與這塊一樣的三角板,并和同桌互相說一說各個角的度數(shù)。(課件出示由三角板抽象出的三角形)
師:這個三角形三個角的度數(shù)和是多少?(180°)你是怎樣知道的?(90°+45°+45°=180°)
明確:把三角形三個內(nèi)角的度數(shù)合起來就叫做三角形的內(nèi)角和。
師:(課件出示由另一塊三角板抽象出的三角形)這個三角形的內(nèi)角和是多少度?(90°+60°+30°=180°)
師:從剛才兩個三角形內(nèi)角和的計算中你發(fā)現(xiàn)了什么?(這兩個三角形的內(nèi)角和都是180°,且這兩個三角形都是直角三角形)
2.探究一般三角形的內(nèi)角和。
(1)剛才我們探究了直角三角形的內(nèi)角和是180°,那么其他任意三角形的內(nèi)角和又是多少度呢?請大家猜一猜。(大多數(shù)學(xué)生認(rèn)為也是180°)
(2)操作、驗(yàn)證一般三角形的內(nèi)角和是180°。
師:剛才大多數(shù)同學(xué)認(rèn)為三角形的內(nèi)角和是180°,但也有幾個同學(xué)不敢肯定,那么我們用什么方法來驗(yàn)證這個猜想是否正確呢?
①小組合作,探究驗(yàn)證方法。
師:請每位同學(xué)先獨(dú)立思考,然后把你的想法在小組內(nèi)交流,看一看哪個小組想出的方法最多。
②交流匯報。
預(yù)設(shè)
組1:我們小組用量角器把三角形的三個內(nèi)角的度數(shù)分別量出來,再加起來看一看是不是等于180°。
組2:我們小組猜想三角形的內(nèi)角和是180°,而平角的度數(shù)也是180°,如果三角形的三個內(nèi)角剛好能拼成一個平角,那么就說明三角形的內(nèi)角和是180°。所以我們小組把三角形的三個內(nèi)角剪下來,拼一拼,看一看能不能拼成一個平角。
③動手操作,驗(yàn)證猜想。
師:請同學(xué)們選擇一種你喜歡的方法來驗(yàn)證我們剛才的猜想,驗(yàn)證完,將你的結(jié)論在小組內(nèi)交流。(出示課堂活動卡,教師巡視,參與各小組的驗(yàn)證活動,并給予適當(dāng)?shù)闹笇?dǎo))
師小結(jié):大家剛才量出來的結(jié)果或拼出來的結(jié)果都在180°左右,其實(shí)三角形的內(nèi)角和就是180°,因?yàn)樵跍y量或操作的過程中會產(chǎn)生誤差,所以數(shù)據(jù)會有一些偏差。
3.得出結(jié)論。
師:根據(jù)上面的驗(yàn)證,我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°,教師板書:三角形的內(nèi)角和是180°)
設(shè)計意圖:學(xué)生通過操作、思考、反饋等過程,真正經(jīng)歷了有效的探究活動,先由直角三角形算出其內(nèi)角和,再用猜想、操作、驗(yàn)證等方法推導(dǎo)出一般三角形的內(nèi)角和,最后歸納得出所有三角形的內(nèi)角和都是180°。在這個過程中,學(xué)生不僅體會到了數(shù)學(xué)學(xué)習(xí)中歸納的思想方法,還感受到了數(shù)學(xué)與生活的密切聯(lián)系。